SEMIPHENOMENOLOGICAL KINETIC EQUATION FOR
A SMALL SYSTEM IN A THERMOSTAT WITH A
VARIABLE TEMPERATURE

I. P. Pavlotskii UDC 532.72

A kinetic equation is obtained for a small system in a thermostat with a variable temperature,
the change of temperature being taken into account by a phenomenological nonpotential force
of the friction type.

Suppose that the return temperature of a thermostat in energy units 8(t) changes sufficiently slowly
with time t so that the thermostat passes through a sequence of equilibrium states. In this case the single-
particle distribution function of the thermostat,consisting of identical particles of mass m, has the form
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where p is the momentum of the particle. We will call the system small if its effect on the thermostat can
be neglected.

Let the small system be in equilibrium with the thermostat. We raise the question of the form of the
kinetic equation for such a system taking into account the change of 8(t) with time. As will be shown below,
this effect can be described by introducing an additional nonpotential force Q of the friction type.

1. As a simple example we will consider a gas of identical molecules the bulk of which forms a thermo-
stat with a variable temperature and a small part of which is nonequilibrium, whereby the "internal" inter-
action in the small system can be neglected. Then the problem reduces to constructing a kinetic equation
describing the evolution of the distribution function f of one nonequilibrium particle in the thermostat,

We denote the coordinate and momentum of the nonequilibrium particle by q; and p; and the coordinates
and momenta of the particles of the thermostat by q,, ps, . . . , ay» PN Let L be the Lagrangian of the
complete system "particle and thermostat" and aQ(py, t) be forces not having a potential (non-Lagrangian),
by means of a suitable selection of which the change of g(t) with time will be taken into account. The Lagran-
gian equations of a system with nonpotential forces have the form
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As was shown in [1], in this case the following equation holds
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Here V is the specific volume; R is the region of collision in single-particle phase space; X;{g;, qi, p, p'»
t) and X,(;, q', py, p', t) are the coordinates and momenta which would be present at time t for particles
participating in the collision if these particles were isolated from all others; (g', p") is the coordinate and
momentum of the particle of the thermostat participating in the collision. The collision integral in a Boltz-
mann form is denoted by Ig. We note that by virtue of the assumption of the absence of an effect on the
small system on the thermostat the integrand in Ig has a special form:
Pro—Py o o

e (P Fy
where py, and pj are the momenta of the nonequilibrium particle and particle of the thermostat respectively
before their collision, and f" and f' are the function f after and before collision.

Obviously when @ = 0 Eq. (2) changes to the usual Boltzmann equation; the term proportional to a takes
into account the effect of Q in the lower approximation with respect to the parameter a; the term proportional
to the product of the small parameters (a/V} takes into account the lower correlation between the effect of
Q(p) and mechanism of collisions.

The equations whichshould be satisfied by the single-particle distribution function of the thermostat
is a particular case of (2). Therefore, substituting F; into (2), we obtain the relation determining Q(p, t):
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As is easy to be convinced by direct substitution, the particular solution of (3) relative to the unknown Q is

1 dinp (@) ,
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The general solution differs from (4) by an arbitrary additive function C(t). From the requirement @ = 0
for B = const we obtain C = 0. Thus (4) is a phenomenological force of the friction type which provides
heating or cooling of the system. This force is analogous in its content to "systematic friction, " which,
as Chandrasekhar [2, 3] showed, is experienced by Brownian particles interacting with a thermostat. Since
force Q should act equally on all particles of the system, by substituting (4) into (2) and limiting ourselves
to terms that are linear with respect to small parameters we obtain the kinetic equation being sought in the
form

of
- T Pis (_
ot (s m  9gy, 2 dt dpy,

_ 3 dinp,_ 1
sy = e FD (5)

1 of  1dnp af)

2. We will make several comments on the equation (5) thus obtained.

It is clear f = T, is the solution not only of Eq. (5) but also of the more general Eq. (2), which is an
obvious consequence of the very method of selecting Q. However, this — one of the particular solutions
— is an analog of the equilibrium solution of the Boltzmann equation.

The phenomenological force Q introduced exhibits a particularly formal character. It seems likely
to us that in a number of cases it can be interpreted as a time-wise smoothed nonconservative effect on a
system, for example, in the mechanism of heating of a gas by radiation. Probably such an interpretation can
prove to be admissible also for a gas being heated (cooled) through the walls of a vessel, despite the fact
that the kinetic equation is derived at the thermodynamic limit. However, it would not be desirable here
to go deeper into this quite difficult matter for an accurate investigation.

The examination of a small system differing in its nature from a thermostat and consideration of the
internal interaction in the small system can be conducted without any difficulties by the scheme indicated
above if we limit ourselves to lower approximations with respect to small parameters. The form of the
equation in this case changes of course.

3. We will establish also the law of the time-wise change of the entropy of the system with a variable
temperature. Let o{pg, Q4> ¢« « » P> AN t) be the distribution function of the complete system. Then its
entropy S is expressed by the formula
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whence
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As was shown in [4], for systems obeying dynamic equations (1):
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i.e., in the case being considered
do 3N dinB(®) -
dt 2 dt
Substituting {7) into (6), we obtain
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We took into account in (8) the normalization condition
j“pdsp1 v digy =1,
Integrating (8), we obtain finally

szl+w@—nfggrm. 9

Thus entropy increases with an increase of temperature and decreases if the temperature decreases.

We can also consider the entropy of the small system

o= 5 d*p,diq,flnf.

Arguments analogous to those just given (but with the use of Eq. (5) for calculating df/dt) lead to the expres-
sion

dh 3 dinf ()
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dt - 2 dt ( )
where J is a term related with the collision integral in the Boltzmann form, The well-known analysis of
this shows [5] that J = 0. Since h > 1, hence it is clear than the entropy of the small system increases when
B{ >0, i.e., during heating of the thermostat. With a decrease of the temperature of the thermostat the
sign of the derivative h with respect to time can be, generally speaking, any.
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